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The solution to the radial Schroedinger equation in the oscillatory region is expressed 
in terms of the amplitude and phase. We present a rapidly converging iterative method 
for numerically solving the corresponding nonlinear differential equation for the am- 
plitude. This method is faster than the straightforward integration of the Schroedinger 
equation because the more slowly varing amplitude permits a much larger step size. The 
phase is obtained by matching with the solution from the exponential region. The 
method considers the departure from the WKB solution and therefore is progressively 
more advantageous for increasing relative energy. We also point out the generalization 
of this method for inhomogenious equations having the same homogenious form as the 
Schroedinger equation. This has relevance for special treatments of scattering problems. 

1. INTRODUCTION 

Explicit computation of wave functions is sometimes necessary for calculation 
of matrix elements. For example, the calculation of the pressure-induced mono- 
chromatic absorption coefficient of H, [l] cannot be accomplished by trace 
techniques, as can the integrated absorption coefficient [2], nor by phase-shift 
theories. For application to cold planetary atmospheres, the expansion either of 
the wavefunction of H, or its absorption coefficient in powers of h is sufficiently 
divergent to require the quantum mechanical calculation of the radial wave 
functions of the two molecules [3]. 

The oscillatory behavior of the solution S(x) to the radial Schroedinger equation 
describing a particle in a potential field V(x) severely limits the step size used by 
any conventional numerical integration scheme. For example, a relative error of 
lo-” per step requires taking 40 steps per cycle when using the Runge-Kutta 
method. Because many cycles of integration are often required before the WKB 
approximation or a series representation accurately describes the solution, 
conventional numerical techniques require much computation. The limitation is 
particularly evident when two families of solutions must be computed for different 
values of t and the orbital angular momentum L. 
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A better approach is to integrate a function which varies much more slowly than 
S(X). Gordon [4] does this by approximating the potential function by a polynomial 
over the step and achieves a result in which the step size is essentially independent 
of wavelength. This paper presents a method which converges most rapidly in the 
quasiclassical limit, i.e., for smaller wavelengths, and yet is sufficient to provide a 
very rapid numerical solution to the radial Schroedinger equation in the oscillatory 
region after the wavefunction has made a couple of oscillations. This method 
chooses the slowly varying amplitude A(x) rather than the rapidly varying S(X) 
to be the dependent variable. The phase variation can be expressed as an integral 
function of the amplitude so that specification of A(X) with the appropriate 
boundary conditions leads to a complete specification of the solution (see, e.g., 
Teddington [5]). The slower variation of A(x) permits a much larger step size 
than is possible by using S(X). 

2. METHOD 

The dimensionless form of the radial Schroedinger equation can be written 

g + D(x) s = 0, 

D(x) = t2 - V(x) - L(L + 1)/x2, (21 

where X, t, and V(X) are now dimensionless quantities and D(x) > 0 in the oscil- 
latory region of the solutions. The method of this paper can be applied to any 
equation of the type (l), where D(x) > 0 provided x is not too close to a zero o’ 
W). 

We write 

where the integral is the phase difference between c and x. When we substj.t~t~ 
this equation into (1) and separate the real and imaginary parts, we obtam two 
simultaneous differential equations. One of these can be integrated directly giving 
p(x) = K/A(x)~, where K is the constant of integration. Substituting this in the 
remaining equation gives the “amplitude equation” 

A” + D(x) A - K2/A3 = 0 b”bl 
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a nonlinear differential equation involving only the amplitude as the unknown and 
differing from the radial equation only by the last term. The solution is then 

S(x) = A(x) sin K 
c s “-!5- + P(c)], 

c A(# 

where c is an arbitrary point on the x-axis, less than x but in the region where 
D(x) > 0 and P(c) is the phase at that point. For vanishing V(X) at large X, (1) 
and (4) show that A” will vanish at large X, or 1y = tA( ~0)~. For unit normalization 
of the wavefunctions in a sphere whose radius goes to intinity, A(co) = 21/z so 
that K = 2t for the unbound particle. 

We may perform the numerical integration of Eq. (1) up to c using, for example, 
the Gordon technique [4] and then match the value and slope to (5) after solving 
Eq. (4) for A(x). This matching provides P(c) and the normalization factor of 
S(X). We find at x = c that 

‘tc) = tan-1 [ A2sIS 2 (A2)‘/2 ]? (6) 

where 

0 < P(c) d z, if S(c) 3 0, 

2-r < P(c) < 217T, if S(c) < 0 

resolve the ambiguity of the branch of the arctangent and 

F = $ sin P(c), (7) 

where F . S is the normalized solution for x < c. 
The solution for A(x) in the oscillatory region is fixed by the boundary condition 

at infinity and may be extended analytically by a WKB solution or by a power 
series solution of Eq. (4) down to a value of x = X, , where the series begins to 
fail and then extended from x = xf to x = c by the numerical sohuion of Eq. (4). 

3. NUMERICAL SOLUTION OF THE AMPLITUDE EQUATION 

Conventional attempts at numerically solving Eq. (4) fail because they are 
unstable. For example, if we try to solve the amplitude equation by the Runge- 
Kutta technique, the solution blows up regardless of the direction of integration. 
This is partially because an extraneous oscillatory solution exists with a very short 
period for high t values which requires a very small step size. This can be overcome 
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by transforming (4) into an integral equation because the boundary conditions are 
then included implicitly and the extraneous solution is therefore excluded. However, 
the solution is still unstable because A”(x) is a small quantity and is given by the 
difference of two large and nearly equal terms so that most of the significant 
figures are lost. In the WKB approximation, A”(x) is identically zero and A(X) = 
KlJ2/D(X)V 

We propose the following iterative method to obtain a numerical solution of 
Eq. (4) which converges rapidly and satisfactorily for large step sizes. ~u~tiplyi~~ 
Eq. (4) through by 2A’ and rearranging terms, we obtain 

Now let 

then 

ll 
K42Y/2m2 + 1 

A2 I 
’ + (4’ D,K2 

y = AZ, 

s = (y’/2K)2, 

B = D/K2, 

(Its)’ 
- + y’B = 0. 

Y 

If the term labeled S(X) were absent, the WKB solution would be obtaine 
y = B-1/2. This motivates the following rearrangement: 

We could insert the definition of s in this formula and solve for y by iteration. 
It is preferable, however, if we do not work too close to the zero of D(X), to define 
the more slowly varying and dimensionless variable f = yB112, which is identically 
1 in the WKB approximation. Letting R = B’/B = D’/D, we now obtain the 
desired equation 

f= [ 
1 + (f ’ -.fW2/4D 1 

112 
1 + (2f “If - 2Rf ‘If + 3R2/2 - D”/D)/40 

where we may choose the WKB solution as the starting point of the iteration: 

fl = [ 
1 + R2/16D v 

1 + (6R2 - 4D”/D)~16D 3 fm 

From this equation, we compute f’ and f N by N-point numerical differentiation 
formulas using a step size considerably larger than allowed by the conventional 
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techniques. We then substitute this in (12) to derivef, . We iterate in this fashion 
each point on a grid of points spaced between c and X, and compare each result 
with the previous one. When the difference becomes less than the tolerance, we 
terminate the iteration for that point. Considerations which limit the step size are 
given in the next section. Programming the iteration of (12) by standard FORTRAN 
methods is easy. Following convergence, we then have 

A(x) = (Kf(x))‘~“/D(x)‘~4. (14) 

We have applied this technique successfully to the computation of the pressure- 
induced absorption coefficient of H, [l] using a tolerance of 5 x 10-5. For this 
unbound system, the largest-x points were always the first to converge. The interval 
under treatment shrank with each iteration cycle giving a rapid convergence with 
a minimum of calculations. The last point to converge was always the matching 
point, c and more than two iterations were seldom required. 

The number of iterations depends on the value of c, which must not be chosen 
too near a zero of D(X). It is sufficient to choose it at a value of x for which the 
wavefunction has already made a couple of oscillations so that the third and 
fifth derivatives off are not so large that the error terms in the numerical differ- 
entiation formulas prevent accurate matching and convergence when using a 
reasonably large step size. Closer than about two oscillations from the zero of 
D(X), y becomes more slowly varying than f so that iterating (11) would be more 
appropriate than (12). 

We now present an error analysis in order to provide information useful for the 
application of this method. 

4. CONVERGENCE RATE AND ERROR 

This method iterates the function f = F(f, f ‘,f”) by approximating f' and f * 
numerically by N-point formulas operating on the n-th iteration f@) and by 
approximating the argument f by fen) and using this function to define ftn+l). 
We expand F in a Taylor series about f, f ‘, and f’ and subtract F to obtain a 
difference equation in the error, v tn) = ftn) -J For 3-point formulas this equation 
is, for step size A, 

vpl) = ,,h) 112 + d [-iTI + $ (I$,$, - 4~21, + 3u$‘)] 

+ f? [-z-z + -& (v$$ - 22&$ + vq , 
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where 

are evaluated at x, and 

The subscript m denotes the m-th solution point and ?J, is some value of x in 
the m-th interval. Tl and T2 are the truncation errors in approximating the exact 
solution derivativesf’ and f fl by 3-point formulas in the m-th interval. We illustrate 
the procedure for 3-point formulas but its generalization to higher-point formulas, 
where the error varies with a higher power of A, is clear. 

Multiplying each term of (15) by zm and defining the generating function g(z) = 
Cm VW&Z”, we collect terms to obtain the difference equation 

g’n+l’(z) = Kg’“‘(z) - b(z), (13 
where 

K sz c + & (z” - 42 + 3) + --g (22 - 22 -I- 1) 

and 

b(z) E f (dT, + eTJ z7?‘. 
WL=O 

The solution of this difference equation converges in the limit 12 -+ cc to 

provided j K j < 1, which is certainly the case for values of z within about 
unity if c, d, and e have sufficiently small absolute values (For 1 z j < 1, b(z) and 
g(z) are bounded in the domain of interest.) This equation defines the C, and 
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the A, . Because z is arbitrary in some interval, we may equate coefficients of P 
to obtain 

(19) 

We find that 

and 

-h 
Cl = -c2 = 2(1 - c)(l - k + ,$)I/2 (20) 

where 

4.2 = 
k - 3h + h2 

k - 2h rt h(l - k + h)li2 ’ (21) 

k = -4e( 1 - c)/@, 

h z 24(1 - c)/d. 
(22) 

The condition for universal convergence is that 1 A, ) > 1. This is the case when 
1 c 1 < 1 and h < 0. It is also the case when either 2 < h < k - 1 or h 3 k - 1 
and k > 4. These do not exhaust the possibilities but they are sticient for our 
purpose. Because e is negative, we have universal convergence when 1 c 1 < 1 and 
d < 0. For inward derivatives of the Schroedinger equation, d is negative, at least 
for x sufficiently far from the zero of D(X). This follows because both terms in 
(16b) are then negative for an ingoing development of the solution. Inward deriv- 
atives f’ and D’ are observed to be negative for H2 at all x, at least for L > 4. 
If d > 0 occurs, we must see that h satisfies the above conditions. These conditions 
assure a stable solution having universal convergence in the sense that the error 
lies within a given bound for an arbitrarily large number of steps when we develop 
the oscillatory solution inwards towards x = 0. 

The tolerance is given by 

where Lax is the maximum over all integers less than or equal to m of 

and where G(h, k) is a quantity having, in practice, a value near unity. For example, 
G(h, k) = 1 when all /3m are equal, G(h, k) = (k + l)/(k - 4) for h = k > 4, 
G(h, k) M d/K for small I h 1, and G(h, k) M l/E/h for k > I h I > 2 illustrate some 
limiting cases. Near the WKB neighborhood, k is large and d is small so that 
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uniform convergence to a small tolerance is easily obtained. For a step size equal 
to one wavelength, d = 2rr/t, G(h, k) is approximately unity so that the tolerance 
is, approximately 

(here the term quadratic in A is negligible in comparison with the linear term). 
Note the rapid decline with increasing t. We observe If” i to diminish with t for 
fixed x at smaller t but it goes rapidly to zero at large t where the WKB approxi- 
mation becomes good. Convergence to a given tolerance is therefore limited to t 
above a minimum value or x larger than a minimum value. Closer to the matching 
point and at smaller t we must use a reduced step size. In practice, we find that 
we can set the matching point at about two oscillations of the solution and still 
realize a significant gain in step size over conventional techniques. 

The use of a 4-point formulas for approximating f” significantly improves the 
permitted step size and makes the tolerance vary as A2. igher-point formulas 
provide a correspondingly greater power of A in the expression for the tolerance. 
Becausef”’ goes rapidly to zero with increasing x, 3-point formulas are sufhcient 
at all but the lowest x values and lower t values. 

5. GENERALIZATION TO THE INHOMOGENIOU~ CASE 

This technique can be generalized to handle the inhomogenious form of (1). 
The integrodifferential equations of atomic scattering theory can sometimes be 
expressed in a form where the homogenious part is like (1) and the inhomo- 
genious part, g(x), is an integral function of the solution [6j. One approach to 
solving this type of equation is to iterate, using the previous iteration to evaluate 
g(x). We point out that the general solution of this equation at any given iteration 
stage is the above homogeneous solution (5) plus the particular solution 

S,=Asin(j+)*jjgcos(j-$$)& 

-Acos(j+).j$gsin(j+)& 

obtained from the variation of parameters. A(x) is still the solution of (4) so that 
the method of this paper, at least in principle, may be applied to certain atomic 
scattering problems. 



72 TRAFTON 

REFERENCES 

1. L. M. TRAFTON, Astuophys. J. 146 (1966), 558-571. 
2. J. D. POLL, AND J. VAN KRANENDONK, Cunud. J. Phys. 39 (1961), 189-204. 
3. J. VAN KRANENDONK, Physica 24 (19X3), 356. 
4. R. GORDON, J. Chem. Phys. 51 (1969), 14-25. 
5. TEDDINGTON, Eng. National Physical Laboratory, “Modern Computing Methods,” 101-102 

Philosophical Library, New York, 1958. 
6. H. E. SARAPH AND M. J. SEATON, Puoc. Phys. Sac., London 80 (1962), 1057-1066. 


